__  __    __   __  _____      _            _          _____ _          _ _ 
 |  \/  |   \ \ / / |  __ \    (_)          | |        / ____| |        | | |
 | \  / |_ __\ V /  | |__) | __ ___   ____ _| |_ ___  | (___ | |__   ___| | |
 | |\/| | '__|> <   |  ___/ '__| \ \ / / _` | __/ _ \  \___ \| '_ \ / _ \ | |
 | |  | | |_ / . \  | |   | |  | |\ V / (_| | ||  __/  ____) | | | |  __/ | |
 |_|  |_|_(_)_/ \_\ |_|   |_|  |_| \_/ \__,_|\__\___| |_____/|_| |_|\___V 2.1
 if you need WebShell for Seo everyday contact me on Telegram
 Telegram Address : @jackleet
        
        
For_More_Tools: Telegram: @jackleet | Bulk Smtp support mail sender | Business Mail Collector | Mail Bouncer All Mail | Bulk Office Mail Validator | Html Letter private



Upload:

Command:

kentishfootball@216.73.216.211: ~ $
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*          Manuel Serrano and Xavier Leroy, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 2000 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(** Large, multi-dimensional, numerical arrays.

   This module implements multi-dimensional arrays of integers and
   floating-point numbers, thereafter referred to as 'big arrays'.
   The implementation allows efficient sharing of large numerical
   arrays between OCaml code and C or Fortran numerical libraries.

   Concerning the naming conventions, users of this module are encouraged
   to do [open Bigarray] in their source, then refer to array types and
   operations via short dot notation, e.g. [Array1.t] or [Array2.sub].

   Big arrays support all the OCaml ad-hoc polymorphic operations:
   - comparisons ([=], [<>], [<=], etc, as well as {!Pervasives.compare});
   - hashing (module [Hash]);
   - and structured input-output (the functions from the
     {!Marshal} module, as well as {!Pervasives.output_value}
     and {!Pervasives.input_value}).
*)

(** {6 Element kinds} *)

(** Big arrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers
   ({!Bigarray.float32_elt}),
- IEEE double precision (64 bits) floating-point numbers
   ({!Bigarray.float64_elt}),
- IEEE single precision (2 * 32 bits) floating-point complex numbers
   ({!Bigarray.complex32_elt}),
- IEEE double precision (2 * 64 bits) floating-point complex numbers
   ({!Bigarray.complex64_elt}),
- 8-bit integers (signed or unsigned)
   ({!Bigarray.int8_signed_elt} or {!Bigarray.int8_unsigned_elt}),
- 16-bit integers (signed or unsigned)
   ({!Bigarray.int16_signed_elt} or {!Bigarray.int16_unsigned_elt}),
- OCaml integers (signed, 31 bits on 32-bit architectures,
   63 bits on 64-bit architectures) ({!Bigarray.int_elt}),
- 32-bit signed integers ({!Bigarray.int32_elt}),
- 64-bit signed integers ({!Bigarray.int64_elt}),
- platform-native signed integers (32 bits on 32-bit architectures,
   64 bits on 64-bit architectures) ({!Bigarray.nativeint_elt}).

   Each element kind is represented at the type level by one of the
   [*_elt] types defined below (defined with a single constructor instead
   of abstract types for technical injectivity reasons).
*)

type float32_elt = Float32_elt
type float64_elt = Float64_elt
type int8_signed_elt = Int8_signed_elt
type int8_unsigned_elt = Int8_unsigned_elt
type int16_signed_elt = Int16_signed_elt
type int16_unsigned_elt = Int16_unsigned_elt
type int32_elt = Int32_elt
type int64_elt = Int64_elt
type int_elt = Int_elt
type nativeint_elt = Nativeint_elt
type complex32_elt = Complex32_elt
type complex64_elt = Complex64_elt

type ('a, 'b) kind =
    Float32 : (float, float32_elt) kind
  | Float64 : (float, float64_elt) kind
  | Int8_signed : (int, int8_signed_elt) kind
  | Int8_unsigned : (int, int8_unsigned_elt) kind
  | Int16_signed : (int, int16_signed_elt) kind
  | Int16_unsigned : (int, int16_unsigned_elt) kind
  | Int32 : (int32, int32_elt) kind
  | Int64 : (int64, int64_elt) kind
  | Int : (int, int_elt) kind
  | Nativeint : (nativeint, nativeint_elt) kind
  | Complex32 : (Complex.t, complex32_elt) kind
  | Complex64 : (Complex.t, complex64_elt) kind
  | Char : (char, int8_unsigned_elt) kind (**)
(** To each element kind is associated an OCaml type, which is
   the type of OCaml values that can be stored in the big array
   or read back from it.  This type is not necessarily the same
   as the type of the array elements proper: for instance,
   a big array whose elements are of kind [float32_elt] contains
   32-bit single precision floats, but reading or writing one of
   its elements from OCaml uses the OCaml type [float], which is
   64-bit double precision floats.

   The GADT type [('a, 'b) kind] captures this association
   of an OCaml type ['a] for values read or written in the big array,
   and of an element kind ['b] which represents the actual contents
   of the big array. Its constructors list all possible associations
   of OCaml types with element kinds, and are re-exported below for
   backward-compatibility reasons.

   Using a generalized algebraic datatype (GADT) here allows to write
   well-typed polymorphic functions whose return type depend on the
   argument type, such as:

{[
  let zero : type a b. (a, b) kind -> a = function
    | Float32 -> 0.0 | Complex32 -> Complex.zero
    | Float64 -> 0.0 | Complex64 -> Complex.zero
    | Int8_signed -> 0 | Int8_unsigned -> 0
    | Int16_signed -> 0 | Int16_unsigned -> 0
    | Int32 -> 0l | Int64 -> 0L
    | Int -> 0 | Nativeint -> 0n
    | Char -> '\000'
]}
*)

val float32 : (float, float32_elt) kind
(** See {!Bigarray.char}. *)

val float64 : (float, float64_elt) kind
(** See {!Bigarray.char}. *)

val complex32 : (Complex.t, complex32_elt) kind
(** See {!Bigarray.char}. *)

val complex64 : (Complex.t, complex64_elt) kind
(** See {!Bigarray.char}. *)

val int8_signed : (int, int8_signed_elt) kind
(** See {!Bigarray.char}. *)

val int8_unsigned : (int, int8_unsigned_elt) kind
(** See {!Bigarray.char}. *)

val int16_signed : (int, int16_signed_elt) kind
(** See {!Bigarray.char}. *)

val int16_unsigned : (int, int16_unsigned_elt) kind
(** See {!Bigarray.char}. *)

val int : (int, int_elt) kind
(** See {!Bigarray.char}. *)

val int32 : (int32, int32_elt) kind
(** See {!Bigarray.char}. *)

val int64 : (int64, int64_elt) kind
(** See {!Bigarray.char}. *)

val nativeint : (nativeint, nativeint_elt) kind
(** See {!Bigarray.char}. *)

val char : (char, int8_unsigned_elt) kind
(** As shown by the types of the values above,
   big arrays of kind [float32_elt] and [float64_elt] are
   accessed using the OCaml type [float].  Big arrays of complex kinds
   [complex32_elt], [complex64_elt] are accessed with the OCaml type
   {!Complex.t}. Big arrays of
   integer kinds are accessed using the smallest OCaml integer
   type large enough to represent the array elements:
   [int] for 8- and 16-bit integer bigarrays, as well as OCaml-integer
   bigarrays; [int32] for 32-bit integer bigarrays; [int64]
   for 64-bit integer bigarrays; and [nativeint] for
   platform-native integer bigarrays.  Finally, big arrays of
   kind [int8_unsigned_elt] can also be accessed as arrays of
   characters instead of arrays of small integers, by using
   the kind value [char] instead of [int8_unsigned]. *)

val kind_size_in_bytes : ('a, 'b) kind -> int
(** [kind_size_in_bytes k] is the number of bytes used to store
   an element of type [k].

   @since 4.03.0 *)

(** {6 Array layouts} *)

type c_layout = C_layout_typ (**)
(** See {!Bigarray.fortran_layout}.*)

type fortran_layout = Fortran_layout_typ (**)
(** To facilitate interoperability with existing C and Fortran code,
   this library supports two different memory layouts for big arrays,
   one compatible with the C conventions,
   the other compatible with the Fortran conventions.

   In the C-style layout, array indices start at 0, and
   multi-dimensional arrays are laid out in row-major format.
   That is, for a two-dimensional array, all elements of
   row 0 are contiguous in memory, followed by all elements of
   row 1, etc.  In other terms, the array elements at [(x,y)]
   and [(x, y+1)] are adjacent in memory.

   In the Fortran-style layout, array indices start at 1, and
   multi-dimensional arrays are laid out in column-major format.
   That is, for a two-dimensional array, all elements of
   column 0 are contiguous in memory, followed by all elements of
   column 1, etc.  In other terms, the array elements at [(x,y)]
   and [(x+1, y)] are adjacent in memory.

   Each layout style is identified at the type level by the
   phantom types {!Bigarray.c_layout} and {!Bigarray.fortran_layout}
   respectively. *)

(** {7 Supported layouts}

   The GADT type ['a layout] represents one of the two supported
   memory layouts: C-style or Fortran-style. Its constructors are
   re-exported as values below for backward-compatibility reasons.
*)

type 'a layout =
    C_layout: c_layout layout
  | Fortran_layout: fortran_layout layout

val c_layout : c_layout layout
val fortran_layout : fortran_layout layout


(** {6 Generic arrays (of arbitrarily many dimensions)} *)

module Genarray :
  sig
  type ('a, 'b, 'c) t
  (** The type [Genarray.t] is the type of big arrays with variable
     numbers of dimensions.  Any number of dimensions between 0 and 16
     is supported.

     The three type parameters to [Genarray.t] identify the array element
     kind and layout, as follows:
     - the first parameter, ['a], is the OCaml type for accessing array
       elements ([float], [int], [int32], [int64], [nativeint]);
     - the second parameter, ['b], is the actual kind of array elements
       ([float32_elt], [float64_elt], [int8_signed_elt], [int8_unsigned_elt],
       etc);
     - the third parameter, ['c], identifies the array layout
       ([c_layout] or [fortran_layout]).

     For instance, [(float, float32_elt, fortran_layout) Genarray.t]
     is the type of generic big arrays containing 32-bit floats
     in Fortran layout; reads and writes in this array use the
     OCaml type [float]. *)

  external create: ('a, 'b) kind -> 'c layout -> int array -> ('a, 'b, 'c) t
    = "caml_ba_create"
  (** [Genarray.create kind layout dimensions] returns a new big array
     whose element kind is determined by the parameter [kind] (one of
     [float32], [float64], [int8_signed], etc) and whose layout is
     determined by the parameter [layout] (one of [c_layout] or
     [fortran_layout]).  The [dimensions] parameter is an array of
     integers that indicate the size of the big array in each dimension.
     The length of [dimensions] determines the number of dimensions
     of the bigarray.

     For instance, [Genarray.create int32 c_layout [|4;6;8|]]
     returns a fresh big array of 32-bit integers, in C layout,
     having three dimensions, the three dimensions being 4, 6 and 8
     respectively.

     Big arrays returned by [Genarray.create] are not initialized:
     the initial values of array elements is unspecified.

     [Genarray.create] raises [Invalid_argument] if the number of dimensions
     is not in the range 0 to 16 inclusive, or if one of the dimensions
     is negative. *)

  external num_dims: ('a, 'b, 'c) t -> int = "caml_ba_num_dims"
  (** Return the number of dimensions of the given big array. *)

  val dims : ('a, 'b, 'c) t -> int array
  (** [Genarray.dims a] returns all dimensions of the big array [a],
     as an array of integers of length [Genarray.num_dims a]. *)

  external nth_dim: ('a, 'b, 'c) t -> int -> int = "caml_ba_dim"
  (** [Genarray.nth_dim a n] returns the [n]-th dimension of the
     big array [a].  The first dimension corresponds to [n = 0];
     the second dimension corresponds to [n = 1]; the last dimension,
     to [n = Genarray.num_dims a - 1].
     Raise [Invalid_argument] if [n] is less than 0 or greater or equal than
     [Genarray.num_dims a]. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  external change_layout: ('a, 'b, 'c) t -> 'd layout -> ('a, 'b, 'd) t
      = "caml_ba_change_layout"
  (** [Genarray.change_layout a layout] returns a bigarray with the
      specified [layout], sharing the data with [a] (and hence having
      the same dimensions as [a]). No copying of elements is involved: the
      new array and the original array share the same storage space.
      The dimensions are reversed, such that [get v [| a; b |]] in
      C layout becomes [get v [| b+1; a+1 |]] in Fortran layout.

      @since 4.04.0
  *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a] multiplied
    by [a]'s {!kind_size_in_bytes}.

    @since 4.03.0 *)

  external get: ('a, 'b, 'c) t -> int array -> 'a = "caml_ba_get_generic"
  (** Read an element of a generic big array.
     [Genarray.get a [|i1; ...; iN|]] returns the element of [a]
     whose coordinates are [i1] in the first dimension, [i2] in
     the second dimension, ..., [iN] in the [N]-th dimension.

     If [a] has C layout, the coordinates must be greater or equal than 0
     and strictly less than the corresponding dimensions of [a].
     If [a] has Fortran layout, the coordinates must be greater or equal
     than 1 and less or equal than the corresponding dimensions of [a].
     Raise [Invalid_argument] if the array [a] does not have exactly [N]
     dimensions, or if the coordinates are outside the array bounds.

     If [N > 3], alternate syntax is provided: you can write
     [a.{i1, i2, ..., iN}] instead of [Genarray.get a [|i1; ...; iN|]].
     (The syntax [a.{...}] with one, two or three coordinates is
     reserved for accessing one-, two- and three-dimensional arrays
     as described below.) *)

  external set: ('a, 'b, 'c) t -> int array -> 'a -> unit
    = "caml_ba_set_generic"
  (** Assign an element of a generic big array.
     [Genarray.set a [|i1; ...; iN|] v] stores the value [v] in the
     element of [a] whose coordinates are [i1] in the first dimension,
     [i2] in the second dimension, ..., [iN] in the [N]-th dimension.

     The array [a] must have exactly [N] dimensions, and all coordinates
     must lie inside the array bounds, as described for [Genarray.get];
     otherwise, [Invalid_argument] is raised.

     If [N > 3], alternate syntax is provided: you can write
     [a.{i1, i2, ..., iN} <- v] instead of
     [Genarray.set a [|i1; ...; iN|] v].
     (The syntax [a.{...} <- v] with one, two or three coordinates is
     reserved for updating one-, two- and three-dimensional arrays
     as described below.) *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given big array by restricting the
     first (left-most) dimension.  [Genarray.sub_left a ofs len]
     returns a big array with the same number of dimensions as [a],
     and the same dimensions as [a], except the first dimension,
     which corresponds to the interval [[ofs ... ofs + len - 1]]
     of the first dimension of [a].  No copying of elements is
     involved: the sub-array and the original array share the same
     storage space.  In other terms, the element at coordinates
     [[|i1; ...; iN|]] of the sub-array is identical to the
     element at coordinates [[|i1+ofs; ...; iN|]] of the original
     array [a].

     [Genarray.sub_left] applies only to big arrays in C layout.
     Raise [Invalid_argument] if [ofs] and [len] do not designate
     a valid sub-array of [a], that is, if [ofs < 0], or [len < 0],
     or [ofs + len > Genarray.nth_dim a 0]. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a sub-array of the given big array by restricting the
     last (right-most) dimension.  [Genarray.sub_right a ofs len]
     returns a big array with the same number of dimensions as [a],
     and the same dimensions as [a], except the last dimension,
     which corresponds to the interval [[ofs ... ofs + len - 1]]
     of the last dimension of [a].  No copying of elements is
     involved: the sub-array and the original array share the same
     storage space.  In other terms, the element at coordinates
     [[|i1; ...; iN|]] of the sub-array is identical to the
     element at coordinates [[|i1; ...; iN+ofs|]] of the original
     array [a].

     [Genarray.sub_right] applies only to big arrays in Fortran layout.
     Raise [Invalid_argument] if [ofs] and [len] do not designate
     a valid sub-array of [a], that is, if [ofs < 1], or [len < 0],
     or [ofs + len > Genarray.nth_dim a (Genarray.num_dims a - 1)]. *)

  external slice_left:
    ('a, 'b, c_layout) t -> int array -> ('a, 'b, c_layout) t
    = "caml_ba_slice"
  (** Extract a sub-array of lower dimension from the given big array
     by fixing one or several of the first (left-most) coordinates.
     [Genarray.slice_left a [|i1; ... ; iM|]] returns the 'slice'
     of [a] obtained by setting the first [M] coordinates to
     [i1], ..., [iM].  If [a] has [N] dimensions, the slice has
     dimension [N - M], and the element at coordinates
     [[|j1; ...; j(N-M)|]] in the slice is identical to the element
     at coordinates [[|i1; ...; iM; j1; ...; j(N-M)|]] in the original
     array [a].  No copying of elements is involved: the slice and
     the original array share the same storage space.

     [Genarray.slice_left] applies only to big arrays in C layout.
     Raise [Invalid_argument] if [M >= N], or if [[|i1; ... ; iM|]]
     is outside the bounds of [a]. *)

  external slice_right:
    ('a, 'b, fortran_layout) t -> int array -> ('a, 'b, fortran_layout) t
    = "caml_ba_slice"
  (** Extract a sub-array of lower dimension from the given big array
     by fixing one or several of the last (right-most) coordinates.
     [Genarray.slice_right a [|i1; ... ; iM|]] returns the 'slice'
     of [a] obtained by setting the last [M] coordinates to
     [i1], ..., [iM].  If [a] has [N] dimensions, the slice has
     dimension [N - M], and the element at coordinates
     [[|j1; ...; j(N-M)|]] in the slice is identical to the element
     at coordinates [[|j1; ...; j(N-M); i1; ...; iM|]] in the original
     array [a].  No copying of elements is involved: the slice and
     the original array share the same storage space.

     [Genarray.slice_right] applies only to big arrays in Fortran layout.
     Raise [Invalid_argument] if [M >= N], or if [[|i1; ... ; iM|]]
     is outside the bounds of [a]. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
      = "caml_ba_blit"
  (** Copy all elements of a big array in another big array.
     [Genarray.blit src dst] copies all elements of [src] into
     [dst].  Both arrays [src] and [dst] must have the same number of
     dimensions and equal dimensions.  Copying a sub-array of [src]
     to a sub-array of [dst] can be achieved by applying [Genarray.blit]
     to sub-array or slices of [src] and [dst]. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Set all elements of a big array to a given value.
     [Genarray.fill a v] stores the value [v] in all elements of
     the big array [a].  Setting only some elements of [a] to [v]
     can be achieved by applying [Genarray.fill] to a sub-array
     or a slice of [a]. *)

  val map_file:
    Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
    bool -> int array -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a big array.
     [Genarray.map_file fd kind layout shared dims]
     returns a big array of kind [kind], layout [layout],
     and dimensions as specified in [dims].  The data contained in
     this big array are the contents of the file referred to by
     the file descriptor [fd] (as opened previously with
     [Unix.openfile], for example).  The optional [pos] parameter
     is the byte offset in the file of the data being mapped;
     it defaults to 0 (map from the beginning of the file).

     If [shared] is [true], all modifications performed on the array
     are reflected in the file.  This requires that [fd] be opened
     with write permissions.  If [shared] is [false], modifications
     performed on the array are done in memory only, using
     copy-on-write of the modified pages; the underlying file is not
     affected.

     [Genarray.map_file] is much more efficient than reading
     the whole file in a big array, modifying that big array,
     and writing it afterwards.

     To adjust automatically the dimensions of the big array to
     the actual size of the file, the major dimension (that is,
     the first dimension for an array with C layout, and the last
     dimension for an array with Fortran layout) can be given as
     [-1].  [Genarray.map_file] then determines the major dimension
     from the size of the file.  The file must contain an integral
     number of sub-arrays as determined by the non-major dimensions,
     otherwise [Failure] is raised.

     If all dimensions of the big array are given, the file size is
     matched against the size of the big array.  If the file is larger
     than the big array, only the initial portion of the file is
     mapped to the big array.  If the file is smaller than the big
     array, the file is automatically grown to the size of the big array.
     This requires write permissions on [fd].

     Array accesses are bounds-checked, but the bounds are determined by
     the initial call to [map_file]. Therefore, you should make sure no
     other process modifies the mapped file while you're accessing it,
     or a SIGBUS signal may be raised. This happens, for instance, if the
     file is shrunk.

     This function raises [Sys_error] in the case of any errors from the
     underlying system calls.  [Invalid_argument] or [Failure] may be
     raised in cases where argument validation fails. *)

  end

(** {6 Zero-dimensional arrays} *)

(** Zero-dimensional arrays. The [Array0] structure provides operations
   similar to those of {!Bigarray.Genarray}, but specialized to the case
   of zero-dimensional arrays that only contain a single scalar value.
   Statically knowing the number of dimensions of the array allows
   faster operations, and more precise static type-checking.
   @since 4.05.0 *)
module Array0 : sig
  type ('a, 'b, 'c) t
  (** The type of zero-dimensional big arrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> ('a, 'b, 'c) t
  (** [Array0.create kind layout] returns a new bigarray of zero dimension.
     [kind] and [layout] determine the array element kind and the array
     layout as described for {!Genarray.create}. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is [a]'s {!kind_size_in_bytes}. *)

  val get: ('a, 'b, 'c) t -> 'a
  (** [Array0.get a] returns the only element in [a]. *)

  val set: ('a, 'b, 'c) t -> 'a -> unit
  (** [Array0.set a x v] stores the value [v] in [a]. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit = "caml_ba_blit"
  (** Copy the first big array to the second big array.
     See {!Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
     See {!Genarray.fill} for more details. *)

  val of_value: ('a, 'b) kind -> 'c layout -> 'a -> ('a, 'b, 'c) t
  (** Build a zero-dimensional big array initialized from the
     given value.  *)

end


(** {6 One-dimensional arrays} *)

(** One-dimensional arrays. The [Array1] structure provides operations
   similar to those of
   {!Bigarray.Genarray}, but specialized to the case of one-dimensional arrays.
   (The {!Array2} and {!Array3} structures below provide operations
   specialized for two- and three-dimensional arrays.)
   Statically knowing the number of dimensions of the array allows
   faster operations, and more precise static type-checking. *)
module Array1 : sig
  type ('a, 'b, 'c) t
  (** The type of one-dimensional big arrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> int -> ('a, 'b, 'c) t
  (** [Array1.create kind layout dim] returns a new bigarray of
     one dimension, whose size is [dim].  [kind] and [layout]
     determine the array element kind and the array layout
     as described for {!Genarray.create}. *)

  external dim: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the size (dimension) of the given one-dimensional
     big array. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a]
    multiplied by [a]'s {!kind_size_in_bytes}.

    @since 4.03.0 *)

  external get: ('a, 'b, 'c) t -> int -> 'a = "%caml_ba_ref_1"
  (** [Array1.get a x], or alternatively [a.{x}],
     returns the element of [a] at index [x].
     [x] must be greater or equal than [0] and strictly less than
     [Array1.dim a] if [a] has C layout.  If [a] has Fortran layout,
     [x] must be greater or equal than [1] and less or equal than
     [Array1.dim a].  Otherwise, [Invalid_argument] is raised. *)

  external set: ('a, 'b, 'c) t -> int -> 'a -> unit = "%caml_ba_set_1"
  (** [Array1.set a x v], also written [a.{x} <- v],
     stores the value [v] at index [x] in [a].
     [x] must be inside the bounds of [a] as described in
     {!Bigarray.Array1.get};
     otherwise, [Invalid_argument] is raised. *)

  external sub: ('a, 'b, 'c) t -> int -> int -> ('a, 'b, 'c) t
      = "caml_ba_sub"
  (** Extract a sub-array of the given one-dimensional big array.
     See {!Genarray.sub_left} for more details. *)

  val slice: ('a, 'b, 'c) t -> int -> ('a, 'b, 'c) Array0.t
  (** Extract a scalar (zero-dimensional slice) of the given one-dimensional
     big array.  The integer parameter is the index of the scalar to
     extract.  See {!Bigarray.Genarray.slice_left} and
     {!Bigarray.Genarray.slice_right} for more details.
     @since 4.05.0 *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
      = "caml_ba_blit"
  (** Copy the first big array to the second big array.
     See {!Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
     See {!Genarray.fill} for more details. *)

  val of_array: ('a, 'b) kind -> 'c layout -> 'a array -> ('a, 'b, 'c) t
  (** Build a one-dimensional big array initialized from the
     given array.  *)

  val map_file: Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
    bool -> int -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a one-dimensional big array.
     See {!Bigarray.Genarray.map_file} for more details. *)

  external unsafe_get: ('a, 'b, 'c) t -> int -> 'a = "%caml_ba_unsafe_ref_1"
  (** Like {!Bigarray.Array1.get}, but bounds checking is not always performed.
      Use with caution and only when the program logic guarantees that
      the access is within bounds. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> 'a -> unit
                     = "%caml_ba_unsafe_set_1"
  (** Like {!Bigarray.Array1.set}, but bounds checking is not always performed.
      Use with caution and only when the program logic guarantees that
      the access is within bounds. *)

end


(** {6 Two-dimensional arrays} *)

(** Two-dimensional arrays. The [Array2] structure provides operations
   similar to those of {!Bigarray.Genarray}, but specialized to the
   case of two-dimensional arrays. *)
module Array2 :
  sig
  type ('a, 'b, 'c) t
  (** The type of two-dimensional big arrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind ->  'c layout -> int -> int -> ('a, 'b, 'c) t
  (** [Array2.create kind layout dim1 dim2] returns a new bigarray of
     two dimension, whose size is [dim1] in the first dimension
     and [dim2] in the second dimension.  [kind] and [layout]
     determine the array element kind and the array layout
     as described for {!Bigarray.Genarray.create}. *)

  external dim1: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the first dimension of the given two-dimensional big array. *)

  external dim2: ('a, 'b, 'c) t -> int = "%caml_ba_dim_2"
  (** Return the second dimension of the given two-dimensional big array. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a]
    multiplied by [a]'s {!kind_size_in_bytes}.

    @since 4.03.0 *)

  external get: ('a, 'b, 'c) t -> int -> int -> 'a = "%caml_ba_ref_2"
  (** [Array2.get a x y], also written [a.{x,y}],
     returns the element of [a] at coordinates ([x], [y]).
     [x] and [y] must be within the bounds
     of [a], as described for {!Bigarray.Genarray.get};
     otherwise, [Invalid_argument] is raised. *)

  external set: ('a, 'b, 'c) t -> int -> int -> 'a -> unit = "%caml_ba_set_2"
  (** [Array2.set a x y v], or alternatively [a.{x,y} <- v],
     stores the value [v] at coordinates ([x], [y]) in [a].
     [x] and [y] must be within the bounds of [a],
     as described for {!Bigarray.Genarray.set};
     otherwise, [Invalid_argument] is raised. *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a two-dimensional sub-array of the given two-dimensional
     big array by restricting the first dimension.
     See {!Bigarray.Genarray.sub_left} for more details.
     [Array2.sub_left] applies only to arrays with C layout. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a two-dimensional sub-array of the given two-dimensional
     big array by restricting the second dimension.
     See {!Bigarray.Genarray.sub_right} for more details.
     [Array2.sub_right] applies only to arrays with Fortran layout. *)

  val slice_left: ('a, 'b, c_layout) t -> int -> ('a, 'b, c_layout) Array1.t
  (** Extract a row (one-dimensional slice) of the given two-dimensional
     big array.  The integer parameter is the index of the row to
     extract.  See {!Bigarray.Genarray.slice_left} for more details.
     [Array2.slice_left] applies only to arrays with C layout. *)

  val slice_right:
    ('a, 'b, fortran_layout) t -> int -> ('a, 'b, fortran_layout) Array1.t
  (** Extract a column (one-dimensional slice) of the given
     two-dimensional big array.  The integer parameter is the
     index of the column to extract.  See {!Bigarray.Genarray.slice_right}
     for more details.  [Array2.slice_right] applies only to arrays
     with Fortran layout. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first big array to the second big array.
     See {!Bigarray.Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
     See {!Bigarray.Genarray.fill} for more details. *)

  val of_array: ('a, 'b) kind -> 'c layout -> 'a array array -> ('a, 'b, 'c) t
  (** Build a two-dimensional big array initialized from the
     given array of arrays.  *)

  val map_file: Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
                bool -> int -> int -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a two-dimensional big array.
     See {!Bigarray.Genarray.map_file} for more details. *)

  external unsafe_get: ('a, 'b, 'c) t -> int -> int -> 'a
                     = "%caml_ba_unsafe_ref_2"
  (** Like {!Bigarray.Array2.get}, but bounds checking is not always
      performed. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> int -> 'a -> unit
                     = "%caml_ba_unsafe_set_2"
  (** Like {!Bigarray.Array2.set}, but bounds checking is not always
      performed. *)

end

(** {6 Three-dimensional arrays} *)

(** Three-dimensional arrays. The [Array3] structure provides operations
   similar to those of {!Bigarray.Genarray}, but specialized to the case
   of three-dimensional arrays. *)
module Array3 :
  sig
  type ('a, 'b, 'c) t
  (** The type of three-dimensional big arrays whose elements have
     OCaml type ['a], representation kind ['b], and memory layout ['c]. *)

  val create: ('a, 'b) kind -> 'c layout -> int -> int -> int -> ('a, 'b, 'c) t
  (** [Array3.create kind layout dim1 dim2 dim3] returns a new bigarray of
     three dimension, whose size is [dim1] in the first dimension,
     [dim2] in the second dimension, and [dim3] in the third.
     [kind] and [layout] determine the array element kind and
     the array layout as described for {!Bigarray.Genarray.create}. *)

  external dim1: ('a, 'b, 'c) t -> int = "%caml_ba_dim_1"
  (** Return the first dimension of the given three-dimensional big array. *)

  external dim2: ('a, 'b, 'c) t -> int = "%caml_ba_dim_2"
  (** Return the second dimension of the given three-dimensional big array. *)

  external dim3: ('a, 'b, 'c) t -> int = "%caml_ba_dim_3"
  (** Return the third dimension of the given three-dimensional big array. *)

  external kind: ('a, 'b, 'c) t -> ('a, 'b) kind = "caml_ba_kind"
  (** Return the kind of the given big array. *)

  external layout: ('a, 'b, 'c) t -> 'c layout = "caml_ba_layout"
  (** Return the layout of the given big array. *)

  val size_in_bytes : ('a, 'b, 'c) t -> int
  (** [size_in_bytes a] is the number of elements in [a]
    multiplied by [a]'s {!kind_size_in_bytes}.

    @since 4.03.0 *)

  external get: ('a, 'b, 'c) t -> int -> int -> int -> 'a = "%caml_ba_ref_3"
  (** [Array3.get a x y z], also written [a.{x,y,z}],
     returns the element of [a] at coordinates ([x], [y], [z]).
     [x], [y] and [z] must be within the bounds of [a],
     as described for {!Bigarray.Genarray.get};
     otherwise, [Invalid_argument] is raised. *)

  external set: ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit
    = "%caml_ba_set_3"
  (** [Array3.set a x y v], or alternatively [a.{x,y,z} <- v],
     stores the value [v] at coordinates ([x], [y], [z]) in [a].
     [x], [y] and [z] must be within the bounds of [a],
     as described for {!Bigarray.Genarray.set};
     otherwise, [Invalid_argument] is raised. *)

  external sub_left: ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) t
    = "caml_ba_sub"
  (** Extract a three-dimensional sub-array of the given
     three-dimensional big array by restricting the first dimension.
     See {!Bigarray.Genarray.sub_left} for more details.  [Array3.sub_left]
     applies only to arrays with C layout. *)

  external sub_right:
    ('a, 'b, fortran_layout) t -> int -> int -> ('a, 'b, fortran_layout) t
    = "caml_ba_sub"
  (** Extract a three-dimensional sub-array of the given
     three-dimensional big array by restricting the second dimension.
     See {!Bigarray.Genarray.sub_right} for more details.  [Array3.sub_right]
     applies only to arrays with Fortran layout. *)

  val slice_left_1:
    ('a, 'b, c_layout) t -> int -> int -> ('a, 'b, c_layout) Array1.t
  (** Extract a one-dimensional slice of the given three-dimensional
     big array by fixing the first two coordinates.
     The integer parameters are the coordinates of the slice to
     extract.  See {!Bigarray.Genarray.slice_left} for more details.
     [Array3.slice_left_1] applies only to arrays with C layout. *)

  val slice_right_1:
    ('a, 'b, fortran_layout) t ->
    int -> int -> ('a, 'b, fortran_layout) Array1.t
  (** Extract a one-dimensional slice of the given three-dimensional
     big array by fixing the last two coordinates.
     The integer parameters are the coordinates of the slice to
     extract.  See {!Bigarray.Genarray.slice_right} for more details.
     [Array3.slice_right_1] applies only to arrays with Fortran
     layout. *)

  val slice_left_2: ('a, 'b, c_layout) t -> int -> ('a, 'b, c_layout) Array2.t
  (** Extract a  two-dimensional slice of the given three-dimensional
     big array by fixing the first coordinate.
     The integer parameter is the first coordinate of the slice to
     extract.  See {!Bigarray.Genarray.slice_left} for more details.
     [Array3.slice_left_2] applies only to arrays with C layout. *)

  val slice_right_2:
    ('a, 'b, fortran_layout) t -> int -> ('a, 'b, fortran_layout) Array2.t
  (** Extract a two-dimensional slice of the given
     three-dimensional big array by fixing the last coordinate.
     The integer parameter is the coordinate of the slice
     to extract.  See {!Bigarray.Genarray.slice_right} for more details.
     [Array3.slice_right_2] applies only to arrays with Fortran
     layout. *)

  external blit: ('a, 'b, 'c) t -> ('a, 'b, 'c) t -> unit
    = "caml_ba_blit"
  (** Copy the first big array to the second big array.
     See {!Bigarray.Genarray.blit} for more details. *)

  external fill: ('a, 'b, 'c) t -> 'a -> unit = "caml_ba_fill"
  (** Fill the given big array with the given value.
     See {!Bigarray.Genarray.fill} for more details. *)

  val of_array:
    ('a, 'b) kind -> 'c layout -> 'a array array array -> ('a, 'b, 'c) t
  (** Build a three-dimensional big array initialized from the
     given array of arrays of arrays.  *)

  val map_file: Unix.file_descr -> ?pos:int64 -> ('a, 'b) kind -> 'c layout ->
             bool -> int -> int -> int -> ('a, 'b, 'c) t
  (** Memory mapping of a file as a three-dimensional big array.
     See {!Bigarray.Genarray.map_file} for more details. *)

  external unsafe_get: ('a, 'b, 'c) t -> int -> int -> int -> 'a
                     = "%caml_ba_unsafe_ref_3"
  (** Like {!Bigarray.Array3.get}, but bounds checking is not always
      performed. *)

  external unsafe_set: ('a, 'b, 'c) t -> int -> int -> int -> 'a -> unit
                     = "%caml_ba_unsafe_set_3"
  (** Like {!Bigarray.Array3.set}, but bounds checking is not always
      performed. *)

end

(** {6 Coercions between generic big arrays and fixed-dimension big arrays} *)

external genarray_of_array0 :
  ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given zero-dimensional
   big array. @since 4.05.0 *)

external genarray_of_array1 :
  ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given one-dimensional
   big array. *)

external genarray_of_array2 :
  ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given two-dimensional
   big array. *)

external genarray_of_array3 :
  ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t = "%identity"
(** Return the generic big array corresponding to the given three-dimensional
   big array. *)

val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
(** Return the zero-dimensional big array corresponding to the given
   generic big array.  Raise [Invalid_argument] if the generic big array
   does not have exactly zero dimension.
   @since 4.05.0 *)

val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t
(** Return the one-dimensional big array corresponding to the given
   generic big array.  Raise [Invalid_argument] if the generic big array
   does not have exactly one dimension. *)

val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t
(** Return the two-dimensional big array corresponding to the given
   generic big array.  Raise [Invalid_argument] if the generic big array
   does not have exactly two dimensions. *)

val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t
(** Return the three-dimensional big array corresponding to the given
   generic big array.  Raise [Invalid_argument] if the generic big array
   does not have exactly three dimensions. *)


(** {6 Re-shaping big arrays} *)

val reshape : ('a, 'b, 'c) Genarray.t -> int array -> ('a, 'b, 'c) Genarray.t
(** [reshape b [|d1;...;dN|]] converts the big array [b] to a
   [N]-dimensional array of dimensions [d1]...[dN].  The returned
   array and the original array [b] share their data
   and have the same layout.  For instance, assuming that [b]
   is a one-dimensional array of dimension 12, [reshape b [|3;4|]]
   returns a two-dimensional array [b'] of dimensions 3 and 4.
   If [b] has C layout, the element [(x,y)] of [b'] corresponds
   to the element [x * 3 + y] of [b].  If [b] has Fortran layout,
   the element [(x,y)] of [b'] corresponds to the element
   [x + (y - 1) * 4] of [b].
   The returned big array must have exactly the same number of
   elements as the original big array [b].  That is, the product
   of the dimensions of [b] must be equal to [i1 * ... * iN].
   Otherwise, [Invalid_argument] is raised. *)

val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   zero-dimensional arrays.
   @since 4.05.0 *)

val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   one-dimensional arrays. *)

val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a, 'b, 'c) Array2.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   two-dimensional arrays. *)

val reshape_3 :
  ('a, 'b, 'c) Genarray.t -> int -> int -> int -> ('a, 'b, 'c) Array3.t
(** Specialized version of {!Bigarray.reshape} for reshaping to
   three-dimensional arrays. *)

Filemanager

Name Type Size Permission Actions
bigarray Folder 0755
bytes Folder 0755
caml Folder 0755
camlp4 Folder 0755
camomile Folder 0755
compiler-libs Folder 0755
dynlink Folder 0755
findlib Folder 0755
graphics Folder 0755
num Folder 0755
num-top Folder 0755
ocamlbuild Folder 0755
ocamldoc Folder 0755
pcre Folder 0755
raw_spacetime Folder 0755
stdlib Folder 0755
str Folder 0755
stublibs Folder 0755
threads Folder 0755
unix Folder 0755
vmthreads Folder 0755
Makefile.config File 3.37 KB 0644
VERSION File 116 B 0644
arg.cmi File 3.84 KB 0644
arg.cmx File 2.35 KB 0644
arg.mli File 9.84 KB 0644
arg.p.cmx File 2.35 KB 0644
arith_flags.cmx File 212 B 0644
arith_status.cmi File 1.04 KB 0644
arith_status.cmx File 1.52 KB 0644
arith_status.mli File 3 KB 0644
array.cmi File 4.54 KB 0644
array.cmx File 1.19 KB 0644
array.mli File 10.66 KB 0644
array.p.cmx File 1.19 KB 0644
arrayLabels.cmi File 4.67 KB 0644
arrayLabels.cmx File 1.06 KB 0644
arrayLabels.mli File 10.76 KB 0644
arrayLabels.p.cmx File 1.06 KB 0644
big_int.cmi File 5.74 KB 0644
big_int.cmx File 4.35 KB 0644
big_int.mli File 10.36 KB 0644
bigarray.a File 35.96 KB 0644
bigarray.cma File 54.32 KB 0644
bigarray.cmi File 19.41 KB 0644
bigarray.cmx File 2.68 KB 0644
bigarray.cmxa File 380 B 0644
bigarray.cmxs File 66.8 KB 0755
bigarray.mli File 41.36 KB 0644
buffer.cmi File 2.03 KB 0644
buffer.cmx File 3.32 KB 0644
buffer.mli File 6.08 KB 0644
buffer.p.cmx File 3.32 KB 0644
bytes.cmi File 5.78 KB 0644
bytes.cmx File 3.04 KB 0644
bytes.mli File 18.85 KB 0644
bytes.p.cmx File 3.04 KB 0644
bytesLabels.cmi File 5.93 KB 0644
bytesLabels.cmx File 2.69 KB 0644
bytesLabels.mli File 12.19 KB 0644
bytesLabels.p.cmx File 2.69 KB 0644
callback.cmi File 404 B 0644
callback.cmx File 418 B 0644
callback.mli File 1.87 KB 0644
callback.p.cmx File 418 B 0644
camlheader File 20 B 0644
camlheader_ur File 2 B 0644
camlinternalFormat.cmi File 6.58 KB 0644
camlinternalFormat.cmx File 6.62 KB 0644
camlinternalFormat.mli File 4.74 KB 0644
camlinternalFormat.p.cmx File 6.62 KB 0644
camlinternalFormatBasics.cmi File 18.2 KB 0644
camlinternalFormatBasics.cmx File 280 B 0644
camlinternalFormatBasics.mli File 13.64 KB 0644
camlinternalFormatBasics.p.cmx File 280 B 0644
camlinternalLazy.cmi File 526 B 0644
camlinternalLazy.cmx File 532 B 0644
camlinternalLazy.mli File 1.34 KB 0644
camlinternalLazy.p.cmx File 532 B 0644
camlinternalMod.cmi File 758 B 0644
camlinternalMod.cmx File 497 B 0644
camlinternalMod.mli File 1.37 KB 0644
camlinternalMod.p.cmx File 497 B 0644
camlinternalOO.cmi File 5.72 KB 0644
camlinternalOO.cmx File 4.6 KB 0644
camlinternalOO.mli File 4.98 KB 0644
camlinternalOO.p.cmx File 4.6 KB 0644
char.cmi File 1.08 KB 0644
char.cmx File 558 B 0644
char.mli File 3.05 KB 0644
char.p.cmx File 558 B 0644
complex.cmi File 1.34 KB 0644
complex.cmx File 1.12 KB 0644
complex.mli File 2.88 KB 0644
complex.p.cmx File 1.12 KB 0644
condition.mli File 2.36 KB 0644
digest.cmi File 1.22 KB 0644
digest.cmx File 1.15 KB 0644
digest.mli File 3.6 KB 0644
digest.p.cmx File 1.15 KB 0644
dynlink.a File 31.06 KB 0644
dynlink.cma File 2.03 MB 0644
dynlink.cmi File 2 KB 0644
dynlink.cmx File 4.31 KB 0644
dynlink.cmxa File 1.79 KB 0644
dynlink.mli File 6.33 KB 0644
ephemeron.cmi File 23.75 KB 0644
ephemeron.cmx File 5.62 KB 0644
ephemeron.mli File 13.44 KB 0644
ephemeron.p.cmx File 5.62 KB 0644
event.mli File 3.66 KB 0644
expunge File 10.45 MB 0755
extract_crc File 558.63 KB 0755
fedora-ocaml-release File 7 B 0644
filename.cmi File 1.8 KB 0644
filename.cmx File 3.07 KB 0644
filename.mli File 6.92 KB 0644
filename.p.cmx File 3.07 KB 0644
format.cmi File 15.12 KB 0644
format.cmx File 13.18 KB 0644
format.mli File 33.18 KB 0644
format.p.cmx File 13.18 KB 0644
gc.cmi File 3.21 KB 0644
gc.cmx File 791 B 0644
gc.mli File 15.09 KB 0644
gc.p.cmx File 791 B 0644
genlex.cmi File 659 B 0644
genlex.cmx File 681 B 0644
genlex.mli File 3.46 KB 0644
genlex.p.cmx File 681 B 0644
graphics.a File 45.67 KB 0644
graphics.cma File 44.76 KB 0644
graphics.cmi File 7.12 KB 0644
graphics.cmx File 2.68 KB 0644
graphics.cmxa File 725 B 0644
graphics.cmxs File 72.39 KB 0755
graphics.mli File 15.37 KB 0644
graphicsX11.cmx File 499 B 0644
hashtbl.cmi File 10.06 KB 0644
hashtbl.cmx File 2.93 KB 0644
hashtbl.mli File 16.68 KB 0644
hashtbl.p.cmx File 2.93 KB 0644
int32.cmi File 3.18 KB 0644
int32.cmx File 911 B 0644
int32.mli File 7.04 KB 0644
int32.p.cmx File 911 B 0644
int64.cmi File 3.56 KB 0644
int64.cmx File 947 B 0644
int64.mli File 7.92 KB 0644
int64.p.cmx File 947 B 0644
int_misc.cmx File 573 B 0644
lazy.cmi File 1.07 KB 0644
lazy.cmx File 523 B 0644
lazy.mli File 4.03 KB 0644
lazy.p.cmx File 523 B 0644
ld.conf File 43 B 0644
lexing.cmi File 2.9 KB 0644
lexing.cmx File 1.74 KB 0644
lexing.mli File 6.7 KB 0644
lexing.p.cmx File 1.74 KB 0644
libasmrun.a File 430.16 KB 0644
libasmrun_pic.a File 430.87 KB 0644
libasmrun_shared.so File 230.83 KB 0755
libasmrunp.a File 459.89 KB 0644
libbigarray.a File 30.19 KB 0644
libcamlrun.a File 463.11 KB 0644
libcamlrun_pic.a File 462.32 KB 0644
libcamlrun_shared.so File 248.16 KB 0755
libcamlstr.a File 8.46 KB 0644
libgraphics.a File 60.48 KB 0644
libnums.a File 17.93 KB 0644
libthreads.a File 24.87 KB 0644
libthreadsnat.a File 25.28 KB 0644
libunix.a File 225.86 KB 0644
list.cmi File 6.37 KB 0644
list.cmx File 2.25 KB 0644
list.mli File 12.64 KB 0644
list.p.cmx File 2.25 KB 0644
listLabels.cmi File 6.48 KB 0644
listLabels.cmx File 2.15 KB 0644
listLabels.mli File 12.85 KB 0644
listLabels.p.cmx File 2.15 KB 0644
map.cmi File 8.75 KB 0644
map.cmx File 1.19 KB 0644
map.mli File 11.78 KB 0644
map.p.cmx File 1.19 KB 0644
marshal.cmi File 1.38 KB 0644
marshal.cmx File 729 B 0644
marshal.mli File 9.26 KB 0644
marshal.p.cmx File 729 B 0644
moreLabels.cmi File 25.4 KB 0644
moreLabels.cmx File 4.78 KB 0644
moreLabels.mli File 7.69 KB 0644
moreLabels.p.cmx File 4.78 KB 0644
mutex.mli File 2.09 KB 0644
nat.cmi File 8.5 KB 0644
nat.cmx File 1.58 KB 0644
nat.mli File 4.83 KB 0644
nativeint.cmi File 3.17 KB 0644
nativeint.cmx File 1.02 KB 0644
nativeint.mli File 7.88 KB 0644
nativeint.p.cmx File 1.02 KB 0644
num.cmi File 4.85 KB 0644
num.cmx File 3.04 KB 0644
num.mli File 5.48 KB 0644
nums.a File 292.07 KB 0644
nums.cma File 301 KB 0644
nums.cmxa File 2.58 KB 0644
nums.cmxs File 234 KB 0755
obj.cmi File 4.77 KB 0644
obj.cmx File 2.12 KB 0644
obj.mli File 5.19 KB 0644
obj.p.cmx File 2.12 KB 0644
objinfo_helper File 995.08 KB 0755
oo.cmi File 603 B 0644
oo.cmx File 368 B 0644
oo.mli File 1.94 KB 0644
oo.p.cmx File 368 B 0644
parsing.cmi File 2.22 KB 0644
parsing.cmx File 1.3 KB 0644
parsing.mli File 4.08 KB 0644
parsing.p.cmx File 1.3 KB 0644
pervasives.cmi File 18.07 KB 0644
pervasives.cmx File 6.11 KB 0644
pervasives.mli File 44.07 KB 0644
pervasives.p.cmx File 6.11 KB 0644
printexc.cmi File 2.65 KB 0644
printexc.cmx File 2.9 KB 0644
printexc.mli File 11.65 KB 0644
printexc.p.cmx File 2.9 KB 0644
printf.cmi File 1.78 KB 0644
printf.cmx File 914 B 0644
printf.mli File 8.04 KB 0644
printf.p.cmx File 914 B 0644
profiling.cmi File 491 B 0644
profiling.cmo File 1.48 KB 0644
profiling.cmx File 455 B 0644
profiling.o File 6.42 KB 0644
queue.cmi File 1.34 KB 0644
queue.cmx File 911 B 0644
queue.mli File 3.06 KB 0644
queue.p.cmx File 911 B 0644
random.cmi File 1.95 KB 0644
random.cmx File 2.35 KB 0644
random.mli File 4.11 KB 0644
random.p.cmx File 2.35 KB 0644
ratio.cmi File 5.45 KB 0644
ratio.cmx File 4.54 KB 0644
ratio.mli File 4.04 KB 0644
raw_spacetime_lib.a File 57.24 KB 0644
raw_spacetime_lib.cma File 70.18 KB 0644
raw_spacetime_lib.cmi File 16 KB 0644
raw_spacetime_lib.cmx File 8.8 KB 0644
raw_spacetime_lib.cmxa File 672 B 0644
raw_spacetime_lib.cmxs File 47.98 KB 0755
raw_spacetime_lib.mli File 10.65 KB 0644
scanf.cmi File 3.48 KB 0644
scanf.cmx File 20.21 KB 0644
scanf.mli File 24.89 KB 0644
scanf.p.cmx File 20.21 KB 0644
set.cmi File 6.85 KB 0644
set.cmx File 1.35 KB 0644
set.mli File 10.02 KB 0644
set.p.cmx File 1.35 KB 0644
sort.cmi File 803 B 0644
sort.cmx File 313 B 0644
sort.mli File 2.28 KB 0644
sort.p.cmx File 313 B 0644
spacetime.cmi File 876 B 0644
spacetime.cmx File 546 B 0644
spacetime.mli File 5.02 KB 0644
spacetime.p.cmx File 546 B 0644
stack.cmi File 1.05 KB 0644
stack.cmx File 1.01 KB 0644
stack.mli File 2.52 KB 0644
stack.p.cmx File 1.01 KB 0644
stdLabels.cmi File 478 B 0644
stdLabels.cmx File 316 B 0644
stdLabels.mli File 1.46 KB 0644
stdLabels.p.cmx File 316 B 0644
std_exit.cmi File 190 B 0644
std_exit.cmo File 1.49 KB 0644
std_exit.cmx File 197 B 0644
std_exit.o File 3.11 KB 0644
std_exit.p.cmx File 197 B 0644
std_exit.p.o File 3.18 KB 0644
stdlib.a File 1.69 MB 0644
stdlib.cma File 2.31 MB 0644
stdlib.cmxa File 14.21 KB 0644
stdlib.p.a File 1.76 MB 0644
stdlib.p.cmxa File 14.21 KB 0644
str.a File 85.78 KB 0644
str.cma File 97.61 KB 0644
str.cmi File 3.28 KB 0644
str.cmx File 4.52 KB 0644
str.cmxa File 559 B 0644
str.cmxs File 80.02 KB 0755
str.mli File 12.59 KB 0644
stream.cmi File 2.13 KB 0644
stream.cmx File 1.59 KB 0644
stream.mli File 3.77 KB 0644
stream.p.cmx File 1.59 KB 0644
string.cmi File 5.36 KB 0644
string.cmx File 3.53 KB 0644
string.mli File 13.8 KB 0644
string.p.cmx File 3.53 KB 0644
stringLabels.cmi File 5.47 KB 0644
stringLabels.cmx File 3.13 KB 0644
stringLabels.mli File 12.06 KB 0644
stringLabels.p.cmx File 3.13 KB 0644
sys.cmi File 3.8 KB 0644
sys.cmx File 673 B 0644
sys.mli File 10.06 KB 0644
sys.p.cmx File 673 B 0644
thread.mli File 5.75 KB 0644
threadUnix.mli File 3.94 KB 0644
topdirs.cmi File 1.58 KB 0644
topdirs.mli File 1.75 KB 0644
topfind File 1.62 KB 0644
uchar.cmi File 1.1 KB 0644
uchar.cmx File 1007 B 0644
uchar.mli File 2.69 KB 0644
uchar.p.cmx File 1007 B 0644
unix.a File 140.53 KB 0644
unix.cma File 145.53 KB 0644
unix.cmi File 25.4 KB 0644
unix.cmx File 12.13 KB 0644
unix.cmxa File 879 B 0644
unix.cmxs File 172.95 KB 0755
unix.mli File 63.8 KB 0644
unixLabels.cmi File 27.1 KB 0644
unixLabels.cmx File 10.99 KB 0644
unixLabels.mli File 55.63 KB 0644
weak.cmi File 3.68 KB 0644
weak.cmx File 1.43 KB 0644
weak.mli File 7.59 KB 0644
weak.p.cmx File 1.43 KB 0644
Filemanager